
Determination of Creep Moduli of 
Rotational Moulding grades of 
Polyethylene from the Expansion of 
Pressurised Pipe  

 

When polyethylene is subjected to continuous stress it will stretch and will continue 

to do so until a point where the material will rupture. This stretching is referred to as 

creep and must be accounted for when designing polyethylene applications which 

will be subject to stress. Such applications include water tanks, where excessive 

creep may result in unacceptable bulging and eventual collapse. 

In order to assess the rate of creep, samples of PE are typically subject to a tensile 

load and the rate of strain (stretching) is measured over time. The data generated 

enables the prediction of strain rates for longer time periods. The extrapolated strain 

rate for a specific time is divided into the applied stress to generate a creep modulus.  

The creep modulus (E) is used by Design Engineers in the assessment of designs 

via Finite Element Analysis (FEA). One of the applications of FEA is the assessment 

of design and thickness requirements of rotationally moulded water tanks.  

Creep moduli are typically calculated from data derived from tensile creep testing 

conducted to standards such as ASTM D2990. The samples are usually 

compression moulded and in our experience the data generated on PE rotational 

moulding grades has not been adequate in repeatability. Given the importance of 

generating accurate and repeatable data we decided to look for another method, one 

which preferably employed the production of samples by rotational moulding.  

We chose to explore the possibility of generating creep data from the circumferential 

expansion of pressurised pipe, as this technique was already employed in the 

protocol for validating the Hydrostatic Design Basis (HDB) of rotational moulding 

grades of Polyethylene according to ASTM2837, Standard Test Method for 

Obtaining Hydrostatic Design Basis for Thermoplastic Pipe Materials or Pressure 

Design Basis for Thermoplastic Pipe Products.  

There were two initial issues to be resolved when looking to utilise pressurised pipe 

circumferential expansion data. The first was that the circumferential expansion of a 

pressurised pipe is constrained to some degree by the axial stress generated by the 

action of pressure on the ends of the pipe. Therefore the Creep Moduli could not be 

simply calculated by division of the hoop stress by the hoop strain.  



The second issue was that the hoop (tangential) stress is not constant across the 

thickness of the pipe. Thus a technique was required for determining an “average” 

stress across the thickness of the pipe. 

Fortunately the mathematical relationships between stress and strain in closed 

cylinders were determined long ago and are defined by Lame’s equation. From this 

relationship our Dr. Steve Mirams derived an equation for the calculation of Creep 

Moduli. The background and derivation are detailed below. 

Determination of Creep Modulus from Pipes 

Theory 
 

The following assumptions have been made: 

 Thickness is uniform around the cylinder 

 The material is isotropic and homogeneous 

 The material behaves in a linear elastic fashion 
o This means the analysis is limited to small strains and stresses well 

below the yield point 

 Effects of cylinder ends can be neglected 
o This limits the analysis to the middle section of cylinders with sufficient 

L/D ratio. 

 The modulus is independent of stress 
o While this is not true for PE, this assumption will contribute only a small 

error over the range of conditions (i.e. pipe dimensions, internal 
pressures) used in the Qenos test program.  

 

The basic relationship between stress and tangential strain for an element of a 

cylinder is1: 

 

𝜀𝑡 =
1

𝐸
(𝜎𝑡 −  𝜈 𝜎𝑎 − 𝜈 𝜎𝑟)        (1) 

 

where  

𝜀𝑡 = tangential (hoop) strain 

E = modulus 

𝜎𝑡 = tangential (hoop) stress 

𝜎𝑎 = axial stress 



𝜎𝑟 = radial stress 

𝜈 = Poisson’s ratio. 

 

For a sealed cylinder with internal pressure, there will be a stress in the axial 

direction on the ends of the cylinder.  This creates strain in the axial direction that 

causes a contraction in the perpendicular directions through Poisson’s effect.  Thus, 

the hoop strain is reduced by the axial stress as shown in equation (1).   

 

For thick-walled cylinders, the stresses vary across the wall.  The stresses are 

described by Lamé’s equations.  In the case of a sealed cylinder where the external 

pressure is zero, these equations are1: 

 

𝜎𝑡 =  
𝑎2(𝑟2+ 𝑏2)

𝑟2(𝑏2− 𝑎2)
 𝑃     (2) 

 

𝜎𝑟 =  
𝑎2(𝑟2− 𝑏2)

𝑟2(𝑏2− 𝑎2)
 𝑃     (3) 

 

𝜎𝑎 =  
𝑎2

(𝑏2− 𝑎2)
 𝑃     (4) 

where  

r = the radius from the axis of the cylinder 

a = inside radius of cylinder 

b = outside radius of cylinder 

P = internal pressure 

 

The stress variations as a function of position, r, are shown schematically in Figure 

1.2  The hoop stress is maximum at the inside radius.  The radial stress is maximum 

in the negative direction (compressive) at the inside radius.  The axial stress is 

constant across the wall.    

 



 

 

At the outer circumference of the cylinder, r = b. 

Substituting r = b into (2) gives the tangential stress at this outer surface, the 

circumferential stress, σc. 

σt at outer surface =  σc =  
2a2

(b2− a2)
 P       (5) 

Substituting r = b into (3) gives the radial stress at the outer surface:    𝜎𝑟 = 0  

 

Substituting (4) and (5) into (1) gives the circumferential strain,  𝜀𝑐 

 𝜀t at outer surface =  𝜀𝑐 =
1

𝐸

𝑎2(2−𝜈)

(𝑏2− 𝑎2)
 𝑃     (6) 

Rearranging, the modulus can be calculated from:   

𝐸 =
𝑎2(2−𝜈)

𝜀𝑐(𝑏2− 𝑎2)
 𝑃     (7) 

 

 

 

  



Cross-checks 
 

First cross-check 

 

As a cross-check, these equations can be compared to those used for thin-walled 

cylinders.  The approximation used for hoop stress in thin-walled cylinders is 

 

σt =  
(OD−t)

2t
 P        (8) 

Where,  

P = internal pressure,  

OD = outer diameter of cylinder (= 2b), 

t = wall thickness of cylinder (= b – a) 

The approximation for the modulus in a thin walled cylinder is1 

𝐸 =
𝑎2(2−𝜈)

𝜀𝑐(𝑏2− 𝑎2)
 𝑃     (7) 

 

It can be shown that equation (8) approaches equation (5) as the wall thickness 

becomes smaller (i.e. as b approaches a). 

It can also be shown that using equation (8) will result in higher values of E than 

equation (5).  Hence using equation (7) will provide more conservative values of the 

modulus than the standard approximations for thin-walled cylinders.    

Second cross-check 

 

An alternative expression for the modulus as a function of the radius has been 

published3:  

𝑟𝜀𝑡 =
(1+𝜈)𝑎2𝑃

𝐸(𝑏2− 𝑎2)
[

(1− 2𝜈)r

(1+𝜈)
+

𝑏2

𝑟
]     (9) 

Rearranging this and inserting the condition at the circumference, r = b, this 

becomes: 

 

E =
(1+𝜈)𝑎2𝑃

𝜀𝑐𝑏(𝑏2− 𝑎2)
[

(1− 2𝜈)b

(1+𝜈)
+ b] (10) 



 

Multiplying out and collecting terms, this equation reduces to equation (7). 

 

Thus we now have an equation (denoted as Mirams’ Equation) which enables the 

calculation of  the creep modulus (E) at any point in time and is stated as follows. 

   

Where P= internal pressure 

 = circumferential strain 

 = internal pipe radius 

= external pipe radius. 

 = Poisson’s ratio 

Derivation of an equation for the calculation of “average” 

tangential (hoop) stress 

The second issue, that of determining an “average” stress across the thickness of 

the pipe was resolved by the integration of Lame’s equation for the determination of 

hoop (tangential) stress of thick walled cylinders. 

 



The following diagram represents a typical set of variables and the resulting stress 

curve.

 

The diagram above shows an example of the stress levels generated in a pipe with 

internal radius of 19.0 mm and an external radius of 23.2mm. Dividing the area 

under the curve by the pipe thickness provides the average tangential (hoop) stress. 

The area under the curve may be determined by integrating Lame’s equation 

between the inner radius (a) and the outer radius (b). 

Frank Austin of Canada College, San Francisco was kind enough to determine the 

following integral. 

 

The area under the curve is therefore equal to the inner radius multiplied by the 

pressure. 

Therefore the average tangential (hoop) stress may be calculated as follows. 

σt(ave)  = aP/(b-a) 

The pressure required to generate a specific average stress may then be calculated 

using the following equation. 



P= σt(ave).(b-a)/a 

Verification of Mirams’ Equation  

In order to verify Mirams’ Equation we employed the services of DB Consulting, a 

major engineering consultant to the Rotational Moulding industry. We set David 

Beneke the task of determining the apparent modulus of Alkatuff LL711UV via Finite 

Element Analysis modelling, given two sets of actual data derived from pressurised 

pipe testing conducted in the Qenos Technical Centre. 

The two sets of data were chosen to cover a range of stresses and times to ensure 

the equation was valid as both were varied. 

The following table has been extracted from the resultant report from DB 

Engineering. The modulus results are highlighted. 

 

The value for Poisson’s ratio used in this modelling was 0.39. 

When the same data was applied to Miram’s Equation the following results were 

achieved. 

 

The results were identical to those generated via FEA modelling. Mirams’ Equation 

was therefore verified. 

With the method now verified, Qenos have undertaken work to generate Creep Data 

and Moduli for Alkatuff LL711UV. The information derived from initial work conducted 

at 40°C is now available for design engineers.  
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